Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Neuropathol Commun ; 11(1): 166, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37853497

RESUMO

Tau tubulin kinase-1 (TTBK1), a neuron-specific tau kinase, is highly expressed in the entorhinal cortex and hippocampal regions, where early tau pathology evolves in Alzheimer's disease (AD). The protein expression level of TTBK1 is elevated in the cortex brain tissues with AD patients compared to the control subjects. We therefore hypothesized that antisense oligonucleotide (ASO) based targeting Ttbk1 could prevent the accumulation of phosphorylated tau, thereby delaying the development of tau pathology in AD. Here we show that in vivo administration of ASO targeting mouse Ttbk1 (ASO-Ttbk1) specifically suppressed the expression of Ttbk1 without affecting Ttbk2 expression in the temporal cortex of PS19 tau transgenic mice. Central administration of ASO-Ttbk1 in PS19 mice significantly reduced the expression level of representative phosphor-tau epitopes relevant to AD at 8 weeks post-dose, including pT231, pT181, and pS396 in the sarkosyl soluble and insoluble fractions isolated from hippocampal tissues as determined by ELISA and pS422 in soluble fractions as determined by western blotting. Immunofluorescence demonstrated that ASO-Ttbk1 significantly reduced pS422 phosphorylated tau intensity in mossy fibers region of the dentate gyrus in PS19 mice. RNA-sequence analysis of the temporal cortex tissue revealed significant enrichment of interferon-gamma and complement pathways and increased expression of antigen presenting molecules (Cd86, Cd74, and H2-Aa) in PS19 mice treated with ASO-Ttbk1, suggesting its potential effect on microglial phenotype although neurotoxic effect was absent. These data suggest that TTBK1 is an attractive therapeutic target to suppress TTBK1 without compromising TTBK2 expression and pathological tau phosphorylation in the early stages of AD.


Assuntos
Doença de Alzheimer , Tauopatias , Camundongos , Animais , Humanos , Oligonucleotídeos Antissenso/farmacologia , Proteínas tau/genética , Proteínas tau/metabolismo , Fosforilação , Tauopatias/metabolismo , Doença de Alzheimer/patologia , Camundongos Transgênicos , Hipocampo/patologia , Córtex Entorrinal/metabolismo
2.
Sci Adv ; 9(37): eadi3647, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37713494

RESUMO

Neuron-derived extracellular vesicles (NDEVs) are potential biomarkers of neurological diseases although their reliable molecular target is not well established. Here, we demonstrate that ATPase Na+/K+ transporting subunit alpha 3 (ATP1A3) is abundantly expressed in extracellular vesicles (EVs) isolated from induced human neuron, brain, cerebrospinal fluid, and plasma in comparison with the presumed NDEV markers NCAM1 and L1CAM by using super-resolution microscopy and biochemical assessments. Proteomic analysis of immunoprecipitated ATP1A3+ brain-derived EVs shows higher enrichment of synaptic markers and cargo proteins relevant to Alzheimer's disease (AD) compared to NCAM1+ or LICAM+ EVs. Single particle analysis shows the elevated amyloid-ß positivity in ATP1A3+ EVs from AD plasma, providing better diagnostic prediction of AD over other plasma biomarkers. Thus, ATP1A3 is a reliable target to isolate NDEV from biofluids for diagnostic research.


Assuntos
Doença de Alzheimer , Vesículas Extracelulares , Humanos , Proteômica , Encéfalo , Moléculas de Adesão de Célula Nervosa , Neurônios , ATPase Trocadora de Sódio-Potássio
3.
J Extracell Vesicles ; 12(8): e12358, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37563857

RESUMO

Extracellular vesicles (EVs) have emerged as critical mediators of intercellular communication and promising biomarkers and therapeutics in the central nervous system (CNS). Human brain-derived EVs (BDEVs) provide a comprehensive snapshot of physiological changes in the brain's environment, however, the isolation of BDEVs and the comparison of different methods for this purpose have not been fully investigated. In this study, we compared the yield, morphology, subtypes and protein cargo composition of EVs isolated from the temporal cortex of aged human brains using three established separation methods: size-exclusion chromatography (SEC), phosphatidylserine affinity capture (MagE) and sucrose gradient ultracentrifugation (SG-UC). Our results showed that SG-UC method provided the highest yield and collected larger EVs compared to SEC and MagE methods as assessed by transmission electron microscopy and nanoparticle tracking analysis (NTA). Quantitative tandem mass-tag (TMT) mass spectrometry analysis of EV samples from three different isolation methods identified a total of 1158 proteins, with SG-UC showing the best enrichment of common EV proteins with less contamination of non-EV proteins. In addition, SG-UC samples were enriched in proteins associated with ATP activity and CNS maintenance, and were abundant in neuronal and oligodendrocytic molecules. In contrast, MagE samples were more enriched in molecules related to lipoproteins, cell-substrate junction and microglia, whereas SEC samples were highly enriched in molecules related to extracellular matrix, Alzheimer's disease and astrocytes. Finally, we validated the proteomic results by performing single-particle analysis using the super-resolution microscopy and flow cytometry. Overall, our findings demonstrate the differences in yield, size, enrichment of EV cargo molecules and single EV assay by different isolation methods, suggesting that the choice of isolation method will have significant impact on the downstream analysis and protein discovery.


Assuntos
Vesículas Extracelulares , Humanos , Idoso , Vesículas Extracelulares/metabolismo , Proteômica/métodos , Lipoproteínas/análise , Microscopia Eletrônica de Transmissão , Encéfalo/metabolismo
4.
Nat Neurosci ; 26(7): 1196-1207, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37291336

RESUMO

Microglia play a critical role in brain homeostasis and disease progression. In neurodegenerative conditions, microglia acquire the neurodegenerative phenotype (MGnD), whose function is poorly understood. MicroRNA-155 (miR-155), enriched in immune cells, critically regulates MGnD. However, its role in Alzheimer's disease (AD) pathogenesis remains unclear. Here, we report that microglial deletion of miR-155 induces a pre-MGnD activation state via interferon-γ (IFN-γ) signaling, and blocking IFN-γ signaling attenuates MGnD induction and microglial phagocytosis. Single-cell RNA-sequencing analysis of microglia from an AD mouse model identifies Stat1 and Clec2d as pre-MGnD markers. This phenotypic transition enhances amyloid plaque compaction, reduces dystrophic neurites, attenuates plaque-associated synaptic degradation and improves cognition. Our study demonstrates a miR-155-mediated regulatory mechanism of MGnD and the beneficial role of IFN-γ-responsive pre-MGnD in restricting neurodegenerative pathology and preserving cognitive function in an AD mouse model, highlighting miR-155 and IFN-γ as potential therapeutic targets for AD.


Assuntos
Doença de Alzheimer , MicroRNAs , Camundongos , Animais , Doença de Alzheimer/metabolismo , Interferon gama/metabolismo , Microglia/metabolismo , Transdução de Sinais/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos , Placa Amiloide/metabolismo
5.
Brain Behav Immun ; 107: 403-413, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36395958

RESUMO

There is increasing evidence showing that microglia play a critical role in mediating synapse formation and spine growth, although the molecular mechanism remains elusive. Here, we demonstrate that the secreted morphogen WNT family member 5A (WNT5A) is the most abundant WNT expressed in microglia and that it promotes neuronal maturation. Co-culture of microglia with Thy1-YFP+ differentiated neurons significantly increased neuronal spine density and reduced dendritic spine turnover rate, which was diminished by silencing microglial Wnt5a in vitro. Co-cultured microglia increased post-synaptic marker PSD95 and synaptic density as determined by the co-localization of PSD95 with pre-synaptic marker VGLUT2 in vitro. The silencing of Wnt5a expression in microglia partially reduced both PSD95 and synaptic densities. Co-culture of differentiated neurons with microglia significantly enhanced neuronal firing rate as measured by multiple electrode array, which was significantly reduced by silencing microglial Wnt5a at 23 days differentiation in vitro. These findings demonstrate that microglia can mediate spine maturation and regulate neuronal excitability via WNT5A secretion indicating possible pathological roles of dysfunctional microglia in developmental disorders.


Assuntos
Espinhas Dendríticas
6.
Acta Neuropathol Commun ; 10(1): 136, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36076283

RESUMO

Single cell RNA sequencing studies identified novel neurodegeneration-associated microglial (MGnD/DAM) subtypes activated around cerebral amyloid plaques. Micro-RNA (miR)-155 of the TREM2-APOE pathway was shown to be a key transcriptional regulator of MGnD microglial phenotype. Despite growing interest in studying manifestations of Alzheimer's disease (AD) in the retina, a CNS organ accessible to noninvasive high-resolution imaging, to date MGnD microglia have not been studied in the AD retina. Here, we discovered the presence and increased populations of Clec7a+ and Galectin-3+ MGnD microglia in retinas of transgenic APPSWE/PS1L166P AD-model mice. Conditionally targeting MGnD microglia by miR-155 ablation via the tamoxifen-inducible CreERT2 system in APPSWE/PS1L166P mice diminished retinal Clec7a+ and Galectin-3+ microglial populations while increasing homeostatic P2ry12+ microglia. Retinal MGnD microglia were often adhering to microvessels; their depletion protected the inner blood-retina barrier and reduced vascular amyloidosis. Microglial miR-155 depletion further limits retinal inflammation. Mass spectrometry analysis revealed enhanced retinal PI3K-Akt signaling and predicted IL-8 and Spp1 decreases in mice with microglia-specific miR-155 knockout. Overall, this study identified MGnD microglia in APPSWE/PS1L166P mouse retina. Transcriptional regulation of these dysfunctional microglia mitigated retinal inflammation and vasculopathy. The protective effects of microglial miR-155 ablation should shed light on potential treatments for retinal inflammation and vascular damage during AD and other ocular diseases.


Assuntos
Doença de Alzheimer , MicroRNAs , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Modelos Animais de Doenças , Galectina 3/genética , Galectina 3/metabolismo , Inflamação/metabolismo , Lectinas Tipo C/metabolismo , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , MicroRNAs/metabolismo , Microglia/metabolismo , Fenótipo , Fosfatidilinositol 3-Quinases/genética , Receptores Imunológicos/metabolismo
7.
Cell Rep ; 39(6): 110791, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35545052

RESUMO

Activated microglia release extracellular vesicles (EVs) as modulators of brain homeostasis and innate immunity. However, the molecules critical for regulating EV production from microglia are poorly understood. Here we establish a murine microglial cell model to monitor EV secretion by measuring the fluorescence signal of tdTomato, which is linked to tetraspanin CD63. Stimulation of tdTomato+ cells with ATP induces rapid secretion of EVs and a reduction in cellular tdTomato intensity, reflecting EV secretion. We generate a GFP+ tdTomato+ cell library expressing TurboGFP and barcoded short hairpin RNAs for genome-wide screening using next-generation sequencing. We identify Mcfd2, Sepp1, and Sdc1 as critical regulators of ATP-induced EV secretion from murine microglia. Small interfering RNA (siRNA-based) silencing of each of these genes suppresses lipopolysaccharide- and ATP-induced inflammasome activation, as determined by interleukin-1ß release from primary cultured murine microglia. These molecules are critical for microglial EV secretion and are potential therapeutic targets for neuroinflammatory disorders.


Assuntos
Vesículas Extracelulares , Microglia , Trifosfato de Adenosina , Animais , Lipopolissacarídeos/farmacologia , Camundongos , RNA Interferente Pequeno
8.
Aging Cell ; 21(6): e13617, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35567427

RESUMO

Alzheimer's disease (AD) is a pervasive neurodegeneration disease with high heritability. In this study, we employed CRISPR-Cas9-engineered technology to investigate the effects of a rare mutation (rs144662445) in the A kinase anchoring protein 9 (AKAP9) gene, which is associated with AD in African Americans (AA), on tau pathology and the tau interactome in SH-SY5Y P301L neuron-like cells. The mutation significantly increased the level of phosphorylated tau, specifically at the site Ser396/Ser404. Moreover, analyses of the tau interactome measured by affinity purification-mass spectrometry revealed that differentially expressed tau-interacting proteins in AKAP9 mutant cells were associated with RNA translation, RNA localization and oxidative activity, recapitulating the tau interactome signature previously reported with human AD brain samples. Importantly, these results were further validated by functional studies showing a significant reduction in protein synthesis activity and excessive oxidative stress in AKAP9 mutant compared with wild type cells in a tau-dependent manner, which are mirrored with pathological phenotype frequently seen in AD. Our results demonstrated specific effects of rs14462445 on mis-processing of tau and suggest a potential role of AKAP9 in AD pathogenesis.


Assuntos
Doença de Alzheimer , Neuroblastoma , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ancoragem à Quinase A/metabolismo , Doença de Alzheimer/patologia , Proteínas do Citoesqueleto/metabolismo , Humanos , Mutação/genética , Neuroblastoma/patologia , Neurônios/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , RNA/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
9.
Aging Dis ; 12(6): 1363-1375, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34527415

RESUMO

Chronic Traumatic Encephalopathy (CTE) is a tauopathy that affects individuals with a history of exposure to repetitive head impacts, including National Football League (NFL) players. Extracellular vesicles (EVs) are known to carry tau in Alzheimer's disease and other tauopathies. We examined protein profiles of EVs separated from the plasma of former NFL players at risk for CTE. EVs were separated from the plasma from former NFL players and age-matched controls using size-exclusion chromatography. Label-free quantitative proteomic analysis identified 675 proteins in plasma EVs, and 17 proteins were significantly differentially expressed between former NFL players and controls. Total tau (t-tau) and tau phosphorylated at threonie181 (p-tau181) in plasma-derived EVs were measured by ultrasensitive immunoassay. Level of t-tau and p-tau181 in EVs were significantly different, and the area under the receiver operating characteristic curve (AUC) of t-tau and p-tau181 showed 0.736 and 0.715, respectively. Machine learning analysis indicated that a combination of collagen type VI alpha 3 and 1 chain (COL6A3 and COL6A1) and reelin (RELN) can distinguish former NFL players from controls with 85% accuracy (AUC = 0.85). Based on the plasma EV proteomics, these data provide protein profiling of plasma EVs for CTE, and indicate combination of COL6A3, RELN and COL6A1 in plasma EVs may serve as the potential diagnostic biomarkers for CTE.

10.
Aging Dis ; 12(6): 1376-1388, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34527416

RESUMO

Chronic Traumatic Encephalopathy (CTE) is a tauopathy that affects individuals with a history of mild repetitive brain injury. The initial neuropathologic changes of CTE include perivascular deposition of phosphorylated microtubule-associated protein tau (p-tau). Extracellular vesicles (EVs) are known to carry pathogenic molecules, such as tau in Alzheimer's disease and CTE suggesting their contribution in pathogenesis. We therefore examined the protein composition of EVs separated from CTE and an age-matched control brain tissues by tandem mass tag -mass spectrometry. The reporter ion intensity was used to quantify the identified molecules. A total of 516 common proteins were identified among three sets of experiments. Weighted protein co-expression network analysis identified 18 unique modules of co-expressed proteins. Two modules were significantly correlated with total tau (t-tau) and p-tau protein in the isolated EVs and enriched in cellular components and biological processes for synaptic vesicle secretion and multivesicular body-plasma membrane fusion. The p-tau (Thr181) level is significantly higher in CTE EVs compared to control EVs and can distinguish the two groups with 73.6% accuracy. A combination of t-tau or p-tau (Thr181) with SNAP-25, PLXNA4 or UBA1, enhanced the accuracy to 96.3, 93.8 and 93.8%, respectively. Bioinformatic protein-protein interaction analysis revealed the functional interaction of SNAP-25 and PLXNA4 with tau, suggesting their interaction in CTE EVs. These data indicate the future application of identified EV proteins for monitoring the CTE risk assessments and understanding the EV-mediated disease progression mechanism.

11.
Sci Transl Med ; 13(611): eabe8455, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34524859

RESUMO

Abnormally phosphorylated tau, an early neuropathologic marker of Alzheimer's disease (AD), first occurs in the brain's entorhinal cortex layer II (ECII) and then spreads to the CA1 field of the hippocampus. Animal models of tau propagation aiming to recapitulate this phenomenon mostly show tau transfer from ECII stellate neurons to the dentate gyrus, but tau pathology in the dentate gyrus does not appear until advanced stages of AD. Wolframin-1­expressing (Wfs1+) pyramidal neurons have been shown functionally to modulate hippocampal CA1 neurons in mice. Here, we report that Wfs1+ pyramidal neurons are conserved in the ECII of postmortem human brain tissue and that Wfs1 colocalized with abnormally phosphorylated tau in brains from individuals with early AD. Wfs1+ neuron­specific expression of human P301L mutant tau in mouse ECII resulted in transfer of tau to hippocampal CA1 pyramidal neurons, suggesting spread of tau pathology as observed in the early Braak stages of AD. In mice expressing human mutant tau specifically in the ECII brain region, electrophysiological recordings of CA1 pyramidal neurons showed reduced excitability. Multielectrode array recordings of optogenetically stimulated Wfs1+ ECII axons resulted in reduced CA1 neuronal firing. Chemogenetic activation of CA1 pyramidal neurons showed a reduction in c-fos+ cells in the CA1. Last, a fear conditioning task revealed deficits in trace and contextual memory in mice overexpressing human mutant tau in the ECII. This work demonstrates tau transfer from the ECII to CA1 in mouse brain and provides an early Braak stage preclinical model of AD.


Assuntos
Córtex Entorrinal , Hipocampo , Animais , Camundongos , Neurônios
13.
Mol Neurodegener ; 16(1): 18, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33752701

RESUMO

BACKGROUND: Recent studies suggest that microglia contribute to tau pathology progression in Alzheimer's disease. Amyloid plaque accumulation transforms microglia, the primary innate immune cells in the brain, into neurodegenerative microglia (MGnD), which exhibit enhanced phagocytosis of plaques, apoptotic neurons and dystrophic neurites containing aggregated and phosphorylated tau (p-tau). It remains unclear how microglia promote disease progression while actively phagocytosing pathological proteins, therefore ameliorating pathology. METHODS: Adeno-associated virus expressing P301L tau mutant (AAV-P301L-tau) was stereotaxically injected into the medial entorhinal cortex (MEC) in C57BL/6 (WT) and humanized APP mutant knock-in homozygote (AppNL-G-F) mice at 5 months of age. Mice were fed either chow containing a colony stimulating factor-1 receptor inhibitor (PLX5622) or control chow from 4 to 6 months of age to test the effect of microglia depletion. Animals were tested at 6 months of age for immunofluorescence, biochemistry, and FACS of microglia. In order to monitor microglial extracellular vesicle secretion in vivo, a novel lentiviral EV reporter system was engineered to express mEmerald-CD9 (mE-CD9) specifically in microglia, which was injected into the same region of MEC. RESULTS: Expressing P301L tau mutant in the MEC induced tau propagation to the granule cell layer of the hippocampal dentate gyrus, which was significantly exacerbated in AppNL-G-F mice compared to WT control mice. Administration of PLX5622 depleted nearly all microglia in mouse brains and dramatically reduced propagation of p-tau in WT and to a greater extent in AppNL-G-F mice, although it increased plaque burden and plaque-associated p-tau+ dystrophic neurites. Plaque-associated MGnD microglia strongly expressed an EV marker, tumor susceptibility gene 101, indicative of heightened synthesis of EVs. Intracortical injection of mE-CD9 lentivirus successfully induced microglia-specific expression of mE-CD9+ EV particles, which were significantly enhanced in Mac2+ MGnD microglia compared to Mac2- homeostatic microglia. Finally, consecutive intracortical injection of mE-CD9 lentivirus and AAV-P301L-tau into AppNL-G-F mice revealed encapsulation of p-tau in microglia-specific mE-CD9+ EVs as determined by super-resolution microscopy and immuno-electron microscopy. DISCUSSION: Our findings suggest that MGnD microglia hyper-secrete p-tau+ EVs while compacting Aß plaques and clearing NP tau, which we propose as a novel mechanistic link between amyloid plaque deposition and exacerbation of tau propagation in AppNL-G-F mice.


Assuntos
Giro Denteado/metabolismo , Córtex Entorrinal/metabolismo , Vesículas Extracelulares/metabolismo , Microglia/metabolismo , Placa Amiloide/patologia , Agregação Patológica de Proteínas/etiologia , Proteínas tau/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Feminino , Técnicas de Introdução de Genes , Vetores Genéticos/administração & dosagem , Humanos , Injeções , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação de Sentido Incorreto , Neuritos/patologia , Compostos Orgânicos/administração & dosagem , Compostos Orgânicos/farmacologia , Mutação Puntual , Agregação Patológica de Proteínas/patologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Proteínas Recombinantes/metabolismo , Proteínas tau/genética
14.
J Proteome Res ; 20(3): 1733-1743, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33534581

RESUMO

Extracellular vesicles (EVs) are secreted by any neural cells in the central nervous system for molecular clearance, cellular communications, and disease spread in multiple neurodegenerative diseases, including Alzheimer's disease (AD), although their exact molecular mechanism is poorly understood. We hypothesize that high-resolution proteomic profiling of EVs separated from animal models of AD would determine the composition of EV contents and their cellular origin. Here, we examined recently developed transgenic mice (CAST.APP/PS1), which express familial AD-linked mutations of amyloid precursor protein (APP) and presenilin-1 (PS1) in the CAST/EiJ mouse strain and develop hippocampal neurodegeneration. Quantitative proteomics analysis of EVs separated from CAST.APP/PS1 and age-matched control mice by tandem mass tag-mass spectrometry identified a total of 3444 unique proteins, which are enriched in neuron-, astrocyte-, oligodendrocyte-, and microglia-specific molecules. CAST.APP/PS1-derived EVs show significant enrichment of Psen1, APP, and Itgax and reduction of Wdr61, Pmpca, Aldh1a2, Calu, Anp32b, Actn4, and Ndufv2 compared to WT-derived EVs, suggesting the involvement of Aß-processing complex and disease-associated/neurodegenerative microglia (DAM/MGnD) in EV secretion. In addition, Itgax and Apoe, DAM/MGnD markers, in EVs show a positive correlation with Itgax and Apoe mRNA expression from brain tissue in CAST.APP/PS1 mice. These datasets indicate the significant contribution of Aß plaque and neurodegeneration-induced DAM/MGnD microglia for EV secretion in CAST.APP/PS1 mice and shed light on understanding AD pathogenesis.


Assuntos
Doença de Alzheimer , Vesículas Extracelulares , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Encéfalo/metabolismo , Proteínas de Ciclo Celular , Modelos Animais de Doenças , Vesículas Extracelulares/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Proteínas do Tecido Nervoso , Proteínas Nucleares , Proteômica
15.
Mol Psychiatry ; 26(6): 1808-1831, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32071385

RESUMO

Maternal immune activation (MIA) disrupts the central innate immune system during a critical neurodevelopmental period. Microglia are primary innate immune cells in the brain although their direct influence on the MIA phenotype is largely unknown. Here we show that MIA alters microglial gene expression with upregulation of cellular protrusion/neuritogenic pathways, concurrently causing repetitive behavior, social deficits, and synaptic dysfunction to layer V intrinsically bursting pyramidal neurons in the prefrontal cortex of mice. MIA increases plastic dendritic spines of the intrinsically bursting neurons and their interaction with hyper-ramified microglia. Treating MIA offspring by colony stimulating factor 1 receptor inhibitors induces depletion and repopulation of microglia, and corrects protein expression of the newly identified MIA-associated neuritogenic molecules in microglia, which coalesces with correction of MIA-associated synaptic, neurophysiological, and behavioral abnormalities. Our study demonstrates that maternal immune insults perturb microglial phenotypes and influence neuronal functions throughout adulthood, and reveals a potent effect of colony stimulating factor 1 receptor inhibitors on the correction of MIA-associated microglial, synaptic, and neurobehavioral dysfunctions.


Assuntos
Microglia , Efeitos Tardios da Exposição Pré-Natal , Animais , Comportamento Animal , Encéfalo , Modelos Animais de Doenças , Feminino , Inflamação , Fator Estimulador de Colônias de Macrófagos , Camundongos , Neurônios , Gravidez , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos
16.
Brain ; 144(1): 288-309, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33246331

RESUMO

Extracellular vesicles are highly transmissible and play critical roles in the propagation of tau pathology, although the underlying mechanism remains elusive. Here, for the first time, we comprehensively characterized the physicochemical structure and pathogenic function of human brain-derived extracellular vesicles isolated from Alzheimer's disease, prodromal Alzheimer's disease, and non-demented control cases. Alzheimer's disease extracellular vesicles were significantly enriched in epitope-specific tau oligomers in comparison to prodromal Alzheimer's disease or control extracellular vesicles as determined by dot blot and atomic force microscopy. Alzheimer's disease extracellular vesicles were more efficiently internalized by murine cortical neurons, as well as more efficient in transferring and misfolding tau, than prodromal Alzheimer's disease and control extracellular vesicles in vitro. Strikingly, the inoculation of Alzheimer's disease or prodromal Alzheimer's disease extracellular vesicles containing only 300 pg of tau into the outer molecular layer of the dentate gyrus of 18-month-old C57BL/6 mice resulted in the accumulation of abnormally phosphorylated tau throughout the hippocampus by 4.5 months, whereas inoculation of an equal amount of tau from control extracellular vesicles, isolated tau oligomers, or fibrils from the same Alzheimer's disease donor showed little tau pathology. Furthermore, Alzheimer's disease extracellular vesicles induced misfolding of endogenous tau in both oligomeric and sarkosyl-insoluble forms in the hippocampal region. Unexpectedly, phosphorylated tau was primarily accumulated in glutamic acid decarboxylase 67 (GAD67) GABAergic interneurons and, to a lesser extent, glutamate receptor 2/3-positive excitatory mossy cells, showing preferential extracellular vesicle-mediated GABAergic interneuronal tau propagation. Whole-cell patch clamp recordings of CA1 pyramidal cells showed significant reduction in the amplitude of spontaneous inhibitory post-synaptic currents. This was accompanied by reductions in c-fos+ GAD67+ neurons and GAD67+ neuronal puncta surrounding pyramidal neurons in the CA1 region, confirming reduced GABAergic transmission in this region. Our study posits a novel mechanism for the spread of tau in hippocampal GABAergic interneurons via brain-derived extracellular vesicles and their subsequent neuronal dysfunction.


Assuntos
Doença de Alzheimer/patologia , Encéfalo/patologia , Vesículas Extracelulares/metabolismo , Interneurônios/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Animais , Encéfalo/metabolismo , Vesículas Extracelulares/patologia , Feminino , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Interneurônios/patologia , Masculino , Camundongos Endogâmicos C57BL , Células Piramidais/metabolismo , Células Piramidais/patologia
18.
Mol Neurodegener ; 15(1): 47, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32811520

RESUMO

BACKGROUND: Neuronal accumulation of misfolded microtubule-associated protein tau is a hallmark of neuropathology in Alzheimer's disease, frontotemporal dementia, and other tauopathies, and has been a therapeutic target. Microglia can spread tau pathology by secreting tau-containing exosomes, although the specific molecular target is yet to be identified for the therapeutic intervention. P2X purinoceptor 7 (P2RX7) is an ATP-gated cation channel, enriched in microglia and triggers exosome secretion. The purpose of the study is to examine the therapeutic effect of an orally applicable, CNS-penetrant P2RX7 specific inhibitor on the early disease stage of a tauopathy mouse model. METHODS: Three-months-old P301S tau mice were treated with P2RX7-specific inhibitor GSK1482160 or vehicle for 30 days, followed by behavioral, biochemical and immunohistochemical assessment. GSK1482160 was also tested for exosome secretion from primary cultured murine astrocytes, neurons and microglia in vitro. RESULTS: Oral administration of GSK1482160 significantly reduced accumulation of MC1+ and Alz50+ misfolded tau in hippocampal regions, which was accompanied with reduced accumulation of Tsg101, an exosome marker, in hippocampal neurons. Proximity ligation assay demonstrated complex formation of Alz50+ tau and Tsg101 in hippocampal neurons, which was reduced by GSK1482160. On the other hand, GSK1482160 had no effect on microglial ramification or CD68 expression, which was significantly enhanced in P301S mice, or pro/anti-inflammatory cytokine gene expression. Strikingly, GSK1482160-treated P301S mice show significantly improved working and contextual memory as determined by Y-maze and fear conditioning tests. GSK1482160 also significantly increased accumulation of Tsg101 and CD81 in microglia in vivo, suggesting its suppression of P2RX7-induced exosome secretion from microglia. This effect was confirmed in vitro, as ATP-induced secretion of tau-containing exosome was significantly suppressed by GSK1482160 treatment from primary murine microglia, but not from neurons or astrocytes. DISCUSSION: The oral administration of P2RX7 inhibition mitigates disease phenotypes in P301S mice, likely by suppressing release of microglial exosomes. P2RX7 could be a novel therapeutic target for the early stage tauopathy development.


Assuntos
Exossomos/efeitos dos fármacos , Ácido Pirrolidonocarboxílico/farmacologia , Receptores Purinérgicos P2X7/efeitos dos fármacos , Tauopatias/patologia , Animais , Modelos Animais de Doenças , Exossomos/metabolismo , Camundongos , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Fenótipo , Receptores Purinérgicos P2X7/metabolismo
19.
Cells ; 9(9)2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32854315

RESUMO

Pathological hallmarks of Alzheimer's disease (AD) are deposits of amyloid beta (Aß) and hyper-phosphorylated tau aggregates in brain plaques. Recent studies have highlighted the importance of Aß and tau-containing extracellular vesicles (EVs) in AD. We therefore examined EVs separated from cerebrospinal fluid (CSF) of AD, mild cognitive impairment (MCI), and control (CTRL) patient samples to profile the protein composition of CSF EV. EV fractions were separated from AD (n = 13), MCI (n = 10), and CTRL (n = 10) CSF samples using MagCapture Exosome Isolation kit. The CSF-derived EV proteins were identified and quantified by label-free and tandem mass tag (TMT)-labeled mass spectrometry. Label-free proteomics analysis identified 2546 proteins that were significantly enriched for extracellular exosome ontology by Gene Ontology analysis. Canonical Pathway Analysis revealed glia-related signaling. Quantitative proteomics analysis, moreover, showed that EVs expressed 1284 unique proteins in AD, MCI and CTRL groups. Statistical analysis identified three proteins-HSPA1A, NPEPPS, and PTGFRN-involved in AD progression. In addition, the PTGFRN showed a moderate correlation with amyloid plaque (rho = 0.404, p = 0.027) and tangle scores (rho = 0.500, p = 0.005) in AD, MCI and CTRL. Based on the CSF EV proteomics, these data indicate that three proteins, HSPA1A, NPEPPS and PTGFRN, may be used to monitor the progression of MCI to AD.


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/genética , Vesículas Extracelulares/metabolismo , Proteômica/métodos , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Projetos Piloto
20.
Alzheimers Dement ; 16(6): 896-907, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32301581

RESUMO

INTRODUCTION: Extracellular vesicles (EVs) from human Alzheimer's disease (AD) biospecimens contain amyloid beta (Aß) peptide and tau. While AD EVs are known to affect brain disease pathobiology, their biochemical and molecular characterizations remain ill defined. METHODS: EVs were isolated from the cortical gray matter of 20 AD and 18 control brains. Tau and Aß levels were measured by immunoassay. Differentially expressed EV proteins were assessed by quantitative proteomics and machine learning. RESULTS: Levels of pS396 tau and Aß1-42 were significantly elevated in AD EVs. High levels of neuron- and glia-specific factors are detected in control and AD EVs, respectively. Machine learning identified ANXA5, VGF, GPM6A, and ACTZ in AD EV compared to controls. They distinguished AD EVs from controls in the test sets with 88% accuracy. DISCUSSION: In addition to Aß and tau, ANXA5, VGF, GPM6A, and ACTZ are new signature proteins in AD EVs.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Vesículas Extracelulares/metabolismo , Proteoma , Idoso , Idoso de 80 Anos ou mais , Peptídeos beta-Amiloides/metabolismo , Feminino , Humanos , Aprendizado de Máquina , Masculino , Fosforilação , Proteômica , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...